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6 Zone alumina wafer trap

Two layers of alumina, 
lower layer electrodes are mirror
image around the trap axis. Low
pass fliters for control electrodes 
integrated on the chip structure.

Trap chip
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Three Qubit Bitflip-Error Correction
The Code
Our implementation is based on a 3-qubit stabilizer code specially developed
for easy implementation with a . The code has no classical
analog and is therefore not locally equivalent to the repetition code or a 
CSS code.

The code is based on the generators {ZZX,ZXZ} and can either detect or 
correct within several different correction protocols. In our experiment we
corrected for bit-flip (X) errors on all three qubits.

single phase gate

Experimental Implementation

Experimental Results
We encoded states of the form and then applied an "error",
a controlled pulse with rotation angle qe. This rotation was applied either
to the  or unencoded state (black symbols).

2For small angles the infidelity should scale as qe , therefore the  black 
curve is roughly linear. For the encoded state the linear error is 
suppressed by the error correction, therefore it starts out 

.

a|ñ +b|¯ñ 

encoded state (red symbols)

quadratically
2in qe      

GHZ-state generation and
 entanglement detection

GHZ-states of up to 6 ions

GHZ states for 3,4 and 5 ions of the form

are produced by sandwiching an appropriate phase
gate in between p/2-pulses. Upon free precession
these states pick up phase N-times faster than a single
ion (top trace). This makes such states useful for spectro-
scopy beyond the standard limit.   

To prove genuine N-particle entanglement, one can use
the witness operator

When the contrast of the phase sweep is larger
than 0.5 the expectation value of the witness is negative 
by the inequality

The contrast of the phase sweeps is a lower bound for fidelity
since the gate that produces the GHZ state is used a second
time to “decode” the phase information. This implies that the
fidelity of our GHZ states could be as high as the square-root
of the contrast.

Experimental Results

Three Qubit Quantum Fourier Transform

Multiplexed architecture
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Check matrices for some protocols
Error detection
(X-errors on qubit 1, all errors on 2,3)

Error correction
(X-errors on qubit 1, Z-errors on 2,3)

Error correction
(X-errors on qubit 1 and 2, Z-errors on 2)

etc.

Error correction
(X-errors on all qubits)
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Experimental implementation

i) Partially entangle ion pairs  and 
   with phase-gate on egyptian mode.
   

1;2 3;4

ii) Entangle across the pairs with phase gate
on the COM, ion  with and ion  with  to
create correlations for purification. 

1 23 4

iii) Move qubits    0.6 mm to trap 7.1;2

iv) Measure qubits , if they are found 
to be in |¯ñ or |¯ñ, assume  are pur-
ified. Otherwise assume purification failed.

3;4
1;2

v) Move qubits 1;2  to trap 5. Do state
tomography to 1;2 to find fidelity.

vi) Repeat whole sequence except step ii)
and subsequent postselection to find
reference fidelity of the unpurified pair 1;2.

We can purify entanglement in the  fidelity range 52% to 75%.

The data is consistent with distillation from 52% to 75%
fidelity by iteration of the process. Iteration would need
recooling of the ions which we have not demonstrated
yet.

-  4 two qubit phase gates  
- Separation of entanglement (300mm)
- Manipulation of entanglement after separation
- Coherent manipulation conditioned on measurement

7     5

Results
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Overlap:

J. Chiaverini et al., submitted
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Control voltage waveforms are created
by first simulating the trap potentials
with SIMION. Then electrode voltages as
a function of time are calculated to achieve 
the desired variation of the axial potential.

In the example to the right, the potential
minimum is first moved from electrode #7 to
electrode #6.Then the well is relaxed so that
the Coulomb repulsion drives the two ions 
towards electrodes #5 and #7. Then electrode 
#6 drives a potential wedge between
the ions placing them in separate 
potential wells over #5 and #7. All steps
are reversed in the second half of the waveforms.

contrast: 97%
fidelity: 99%

contrast: 84%
fidelity: 89%
áWñ < -0.68

contrast: 69.8(3)%
fidelity: ³ 76(1)%
áWñ < -0.51(2)

contrast: 52.7(3)%
fidelity: 60(2)%
áWñ < -0.20(4)

contrast: 41.9(4)%
fidelity: 50.9(4)
áWñ < -0.018(8)
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